10 Facts
About

Technical
Debt

https://tillcarlos.com/technical-debt

#1 Unreasonable: trying to
prevent it

o |t can even be beneficial in the early
stages of a product

o Answer: what features are actually
needed?
Then cut corners

Getting to market faster -> TD can be a
good trade-off

tillcarlos.com/technical-debt

https://tillcarlos.com/technical-debt

#2 It happens unknowingly

Most of the time devs don't produce it
on purpose. Reason: they cannot even
see where the software Will go in the
future.

/
Not this |

Devs can see this
Flexibility
Feature set

Why?

o Inexperienced developers may skip
tests, which increases the time for
any small change

o Experienced developers may build
structures that are less flexible but
faster, creating technical debt

o Technical debt happens with tests,
specs, and good management
because the desired flexibility is not

known at the start

tillcarlos.com/technical-debt

https://tillcarlos.com/technical-debt

#3 It's always there and
always needs to be dealt with

Stripe engineers spend 33% of
their time dealing with technical
debt

tillcarlos.com/technical-debt

https://tillcarlos.com/technical-debt

o We keep a separate swim lane in Jira
for technical debt

other ideas to deal with TD include;

o developer Fridays, Ranger teams,
DVD person dedicated for
refactoring.

o For bigger thigs: Write TODOs in the
code + dedicated tickets

tillcarlos.com/technical-debt

https://tillcarlos.com/technical-debt

o One of the best ways to minimize
debt

o~Rely on frameworks much \

(#4 Write Less Code
\

Application Logic

Application Logic

Framework Code Framework Code

Conventional Radical Simple

new tech

o Projects tend to expand to their
deadlines and complexity increases
with time, and ultimately results with

technicaldebt. - .. .

gy S —~a

2l Iithaflbslcém/téchniC_‘;ﬂ,l‘débt‘I % 8 -- ‘- l

https://tillcarlos.com/technical-debt

#6 Team's Morale can
diminish iijyou don't address it

o Technical debt doesn't usually scare
good developers.

o Developers experience degrades
with increased technical debt -
leading to further issues

tillcarlos.com/technical-debt 9

https://tillcarlos.com/technical-debt

o Developers can @
technical debt, Whs
sense of ownership,

problem.

to get the time:
needing for morg

10

https://tillcarlos.com/technical-debt

&
#7 Agile wont bethe remedy

.
Agile helps with technical debt if

there's room in each sprint to tackle it

o Waterfall moo%l'is still a good option
for planning large sofrw%isrojects,
where you know exactly t you
want to build. \ \
tillcarlos.com/tecw@c 11

https://tillcarlos.com/technical-debt

#8 Testing + Refactoring
should be in the DNA of your

feam

tillcarlos.com/technical-debt

https://tillcarlos.com/technical-debt

Testing, Refactoring, Monitoring
belongs into the DNA of the team

Steve McConnell's in "Professional
Software Development”:

We call this the mid-way between
full upfront design and planning
and having to constantly rewrite
entire software implementations
of systems. That's where the good
modular designh of components
and containers comes into play.

-

tillcarlos.com/technical-debt

https://tillcarlos.com/technical-debt

#9 Clients need education

managing the technical debt
requires strong leadership
towards the client.

o often clients are not willing to “pay
extra” and don't see the value in
reworking an already written
subsystem.,

o What needs to happenis:

— Plan refactoring into the budget
— Document every time you pile up technical debt
— Work through it constantly.

tillcarlos.com/technical-debt

https://tillcarlos.com/technical-debt

#10 Tipping-. point
There are prOJects where too much-
-techmcal debt. slews down

development somuch that no real s :

progress Is done leadlng to:

— More managers and meetings
— Good developers leaving

Tipping point: progress stalls

Features OR
Technical Debt

/

tillcarlos.com/technical-debt

https://tillcarlos.com/technical-debt

.. and only two ways:

o A full rewrite. Or heavy investment in
refactoring.

o Good managers monitor ticket
throughput and developer

nappiness to test how close the

oroject is to the tipping point.

o In the startup world, this point may
come after Product-Market-Fit.

tillcarlos.com/technical-debt

https://tillcarlos.com/technical-debt

Get in touch

Full post at
TillCarlos.com.

| make this to help
people like you be more
successful with their
software projects.

Questions? write me!

Download slides (pdf)

tillcarlos.com/technical-
debt

https://tillcarlos.com/technical-debt
https://tillcarlos.com/about
https://tillcarlos.com/slides/technical-debt.pdf
https://tillcarlos.com/technical-debt

